Multi-Class SVM for Large Data Sets Considering Models of Classes Distribution

نویسندگان

  • Jair Cervantes
  • Xiaoou Li
  • Wen Yu
چکیده

Support Vector Machines (SVM) have gained profound interest amidst the researchers. One of the important issues concerning SVM is with its application to large data sets. It is recognized that SVM is computationally very intensive. This paper presents a novel multi SVM classification approach for large data sets using the sketch of classes distribution which is obtained by using SVM and minimum enclosing ball (MEB) method. Our approach has distinctive advantages on dealing with huge data sets. Experiments done with several large synthetic and real world data sets, show good performance on computational expense and accuracy. keywords: support vector machines, multi-classification, large data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

توسعه دو مدل ریاضی کارا برای مسئله کوله‏پشتی چند انتخابی فازی

 Multi-choice knapsack problem is a branch of regular knapsack problem where the objects are classified in different classes and each class has one and only one representative in final solution. Although it is assumed that each object belongs to just one class, sometimes this assumption is not valid in real problems. In this case an object may belong to the several classes. In fuzzy multi-choic...

متن کامل

شناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخش‌های متمایز‌کننده

In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...

متن کامل

A Sparse Twin SVM for multi-classification problems

We propose Sparse TSVM, a multi-class SVM classifier that determines k nonparallel planes by solving k related SVM-type problems. The Sparse TSVM promotes Twin SVM to one-versus-rest approach. And it capture classes' main feature better with the sparse algorithm. On several benchmark data sets, Sparse TSVM is not only fast, but shows good generalization.

متن کامل

روشی جدید برای عضویت‌دهی به داده‌ها و شناسایی نوفه و داده‌های پرت با استفاده از ماشین بردار پشتیبان فازی

Support Vector Machine (SVM) is one of the important classification techniques, has been recently attracted by many of the researchers. However, there are some limitations for this approach. Determining the hyperplane that distinguishes classes with the maximum margin and calculating the position of each point (train data) in SVM linear classifier can be interpreted as computing a data membersh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008